Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 219, 867, 662, 592 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 219, 867, 662, 592 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 219, 867, 662, 592 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 219, 867, 662, 592 is 1.
HCF(219, 867, 662, 592) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 219, 867, 662, 592 is 1.
Step 1: Since 867 > 219, we apply the division lemma to 867 and 219, to get
867 = 219 x 3 + 210
Step 2: Since the reminder 219 ≠ 0, we apply division lemma to 210 and 219, to get
219 = 210 x 1 + 9
Step 3: We consider the new divisor 210 and the new remainder 9, and apply the division lemma to get
210 = 9 x 23 + 3
We consider the new divisor 9 and the new remainder 3, and apply the division lemma to get
9 = 3 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 219 and 867 is 3
Notice that 3 = HCF(9,3) = HCF(210,9) = HCF(219,210) = HCF(867,219) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 662 > 3, we apply the division lemma to 662 and 3, to get
662 = 3 x 220 + 2
Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get
3 = 2 x 1 + 1
Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 662 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(662,3) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 592 > 1, we apply the division lemma to 592 and 1, to get
592 = 1 x 592 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 592 is 1
Notice that 1 = HCF(592,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 219, 867, 662, 592?
Answer: HCF of 219, 867, 662, 592 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 219, 867, 662, 592 using Euclid's Algorithm?
Answer: For arbitrary numbers 219, 867, 662, 592 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.