Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2199, 5600, 62326 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 2199, 5600, 62326 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 2199, 5600, 62326 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 2199, 5600, 62326 is 1.
HCF(2199, 5600, 62326) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 2199, 5600, 62326 is 1.
Step 1: Since 5600 > 2199, we apply the division lemma to 5600 and 2199, to get
5600 = 2199 x 2 + 1202
Step 2: Since the reminder 2199 ≠ 0, we apply division lemma to 1202 and 2199, to get
2199 = 1202 x 1 + 997
Step 3: We consider the new divisor 1202 and the new remainder 997, and apply the division lemma to get
1202 = 997 x 1 + 205
We consider the new divisor 997 and the new remainder 205,and apply the division lemma to get
997 = 205 x 4 + 177
We consider the new divisor 205 and the new remainder 177,and apply the division lemma to get
205 = 177 x 1 + 28
We consider the new divisor 177 and the new remainder 28,and apply the division lemma to get
177 = 28 x 6 + 9
We consider the new divisor 28 and the new remainder 9,and apply the division lemma to get
28 = 9 x 3 + 1
We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get
9 = 1 x 9 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2199 and 5600 is 1
Notice that 1 = HCF(9,1) = HCF(28,9) = HCF(177,28) = HCF(205,177) = HCF(997,205) = HCF(1202,997) = HCF(2199,1202) = HCF(5600,2199) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 62326 > 1, we apply the division lemma to 62326 and 1, to get
62326 = 1 x 62326 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 62326 is 1
Notice that 1 = HCF(62326,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 2199, 5600, 62326?
Answer: HCF of 2199, 5600, 62326 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 2199, 5600, 62326 using Euclid's Algorithm?
Answer: For arbitrary numbers 2199, 5600, 62326 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.