Highest Common Factor of 220, 704, 571 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 220, 704, 571 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 220, 704, 571 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 220, 704, 571 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 220, 704, 571 is 1.

HCF(220, 704, 571) = 1

HCF of 220, 704, 571 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 220, 704, 571 is 1.

Highest Common Factor of 220,704,571 using Euclid's algorithm

Highest Common Factor of 220,704,571 is 1

Step 1: Since 704 > 220, we apply the division lemma to 704 and 220, to get

704 = 220 x 3 + 44

Step 2: Since the reminder 220 ≠ 0, we apply division lemma to 44 and 220, to get

220 = 44 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 44, the HCF of 220 and 704 is 44

Notice that 44 = HCF(220,44) = HCF(704,220) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 571 > 44, we apply the division lemma to 571 and 44, to get

571 = 44 x 12 + 43

Step 2: Since the reminder 44 ≠ 0, we apply division lemma to 43 and 44, to get

44 = 43 x 1 + 1

Step 3: We consider the new divisor 43 and the new remainder 1, and apply the division lemma to get

43 = 1 x 43 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 44 and 571 is 1

Notice that 1 = HCF(43,1) = HCF(44,43) = HCF(571,44) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 220, 704, 571 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 220, 704, 571?

Answer: HCF of 220, 704, 571 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 220, 704, 571 using Euclid's Algorithm?

Answer: For arbitrary numbers 220, 704, 571 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.