Highest Common Factor of 2238, 5615 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2238, 5615 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2238, 5615 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2238, 5615 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2238, 5615 is 1.

HCF(2238, 5615) = 1

HCF of 2238, 5615 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2238, 5615 is 1.

Highest Common Factor of 2238,5615 using Euclid's algorithm

Highest Common Factor of 2238,5615 is 1

Step 1: Since 5615 > 2238, we apply the division lemma to 5615 and 2238, to get

5615 = 2238 x 2 + 1139

Step 2: Since the reminder 2238 ≠ 0, we apply division lemma to 1139 and 2238, to get

2238 = 1139 x 1 + 1099

Step 3: We consider the new divisor 1139 and the new remainder 1099, and apply the division lemma to get

1139 = 1099 x 1 + 40

We consider the new divisor 1099 and the new remainder 40,and apply the division lemma to get

1099 = 40 x 27 + 19

We consider the new divisor 40 and the new remainder 19,and apply the division lemma to get

40 = 19 x 2 + 2

We consider the new divisor 19 and the new remainder 2,and apply the division lemma to get

19 = 2 x 9 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2238 and 5615 is 1

Notice that 1 = HCF(2,1) = HCF(19,2) = HCF(40,19) = HCF(1099,40) = HCF(1139,1099) = HCF(2238,1139) = HCF(5615,2238) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2238, 5615 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2238, 5615?

Answer: HCF of 2238, 5615 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2238, 5615 using Euclid's Algorithm?

Answer: For arbitrary numbers 2238, 5615 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.