Highest Common Factor of 224, 154, 863 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 224, 154, 863 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 224, 154, 863 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 224, 154, 863 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 224, 154, 863 is 1.

HCF(224, 154, 863) = 1

HCF of 224, 154, 863 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 224, 154, 863 is 1.

Highest Common Factor of 224,154,863 using Euclid's algorithm

Highest Common Factor of 224,154,863 is 1

Step 1: Since 224 > 154, we apply the division lemma to 224 and 154, to get

224 = 154 x 1 + 70

Step 2: Since the reminder 154 ≠ 0, we apply division lemma to 70 and 154, to get

154 = 70 x 2 + 14

Step 3: We consider the new divisor 70 and the new remainder 14, and apply the division lemma to get

70 = 14 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 14, the HCF of 224 and 154 is 14

Notice that 14 = HCF(70,14) = HCF(154,70) = HCF(224,154) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 863 > 14, we apply the division lemma to 863 and 14, to get

863 = 14 x 61 + 9

Step 2: Since the reminder 14 ≠ 0, we apply division lemma to 9 and 14, to get

14 = 9 x 1 + 5

Step 3: We consider the new divisor 9 and the new remainder 5, and apply the division lemma to get

9 = 5 x 1 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 14 and 863 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(14,9) = HCF(863,14) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 224, 154, 863 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 224, 154, 863?

Answer: HCF of 224, 154, 863 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 224, 154, 863 using Euclid's Algorithm?

Answer: For arbitrary numbers 224, 154, 863 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.