Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 226, 904, 966 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 226, 904, 966 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 226, 904, 966 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 226, 904, 966 is 2.
HCF(226, 904, 966) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 226, 904, 966 is 2.
Step 1: Since 904 > 226, we apply the division lemma to 904 and 226, to get
904 = 226 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 226, the HCF of 226 and 904 is 226
Notice that 226 = HCF(904,226) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 966 > 226, we apply the division lemma to 966 and 226, to get
966 = 226 x 4 + 62
Step 2: Since the reminder 226 ≠ 0, we apply division lemma to 62 and 226, to get
226 = 62 x 3 + 40
Step 3: We consider the new divisor 62 and the new remainder 40, and apply the division lemma to get
62 = 40 x 1 + 22
We consider the new divisor 40 and the new remainder 22,and apply the division lemma to get
40 = 22 x 1 + 18
We consider the new divisor 22 and the new remainder 18,and apply the division lemma to get
22 = 18 x 1 + 4
We consider the new divisor 18 and the new remainder 4,and apply the division lemma to get
18 = 4 x 4 + 2
We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get
4 = 2 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 226 and 966 is 2
Notice that 2 = HCF(4,2) = HCF(18,4) = HCF(22,18) = HCF(40,22) = HCF(62,40) = HCF(226,62) = HCF(966,226) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 226, 904, 966?
Answer: HCF of 226, 904, 966 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 226, 904, 966 using Euclid's Algorithm?
Answer: For arbitrary numbers 226, 904, 966 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.