Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2271, 7098 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 2271, 7098 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 2271, 7098 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 2271, 7098 is 3.
HCF(2271, 7098) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 2271, 7098 is 3.
Step 1: Since 7098 > 2271, we apply the division lemma to 7098 and 2271, to get
7098 = 2271 x 3 + 285
Step 2: Since the reminder 2271 ≠ 0, we apply division lemma to 285 and 2271, to get
2271 = 285 x 7 + 276
Step 3: We consider the new divisor 285 and the new remainder 276, and apply the division lemma to get
285 = 276 x 1 + 9
We consider the new divisor 276 and the new remainder 9,and apply the division lemma to get
276 = 9 x 30 + 6
We consider the new divisor 9 and the new remainder 6,and apply the division lemma to get
9 = 6 x 1 + 3
We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get
6 = 3 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 2271 and 7098 is 3
Notice that 3 = HCF(6,3) = HCF(9,6) = HCF(276,9) = HCF(285,276) = HCF(2271,285) = HCF(7098,2271) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 2271, 7098?
Answer: HCF of 2271, 7098 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 2271, 7098 using Euclid's Algorithm?
Answer: For arbitrary numbers 2271, 7098 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.