Highest Common Factor of 2278, 8901 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2278, 8901 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2278, 8901 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2278, 8901 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2278, 8901 is 1.

HCF(2278, 8901) = 1

HCF of 2278, 8901 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2278, 8901 is 1.

Highest Common Factor of 2278,8901 using Euclid's algorithm

Highest Common Factor of 2278,8901 is 1

Step 1: Since 8901 > 2278, we apply the division lemma to 8901 and 2278, to get

8901 = 2278 x 3 + 2067

Step 2: Since the reminder 2278 ≠ 0, we apply division lemma to 2067 and 2278, to get

2278 = 2067 x 1 + 211

Step 3: We consider the new divisor 2067 and the new remainder 211, and apply the division lemma to get

2067 = 211 x 9 + 168

We consider the new divisor 211 and the new remainder 168,and apply the division lemma to get

211 = 168 x 1 + 43

We consider the new divisor 168 and the new remainder 43,and apply the division lemma to get

168 = 43 x 3 + 39

We consider the new divisor 43 and the new remainder 39,and apply the division lemma to get

43 = 39 x 1 + 4

We consider the new divisor 39 and the new remainder 4,and apply the division lemma to get

39 = 4 x 9 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2278 and 8901 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(39,4) = HCF(43,39) = HCF(168,43) = HCF(211,168) = HCF(2067,211) = HCF(2278,2067) = HCF(8901,2278) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2278, 8901 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2278, 8901?

Answer: HCF of 2278, 8901 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2278, 8901 using Euclid's Algorithm?

Answer: For arbitrary numbers 2278, 8901 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.