Highest Common Factor of 23, 68, 647, 384 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 23, 68, 647, 384 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 23, 68, 647, 384 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 23, 68, 647, 384 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 23, 68, 647, 384 is 1.

HCF(23, 68, 647, 384) = 1

HCF of 23, 68, 647, 384 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 23, 68, 647, 384 is 1.

Highest Common Factor of 23,68,647,384 using Euclid's algorithm

Highest Common Factor of 23,68,647,384 is 1

Step 1: Since 68 > 23, we apply the division lemma to 68 and 23, to get

68 = 23 x 2 + 22

Step 2: Since the reminder 23 ≠ 0, we apply division lemma to 22 and 23, to get

23 = 22 x 1 + 1

Step 3: We consider the new divisor 22 and the new remainder 1, and apply the division lemma to get

22 = 1 x 22 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 23 and 68 is 1

Notice that 1 = HCF(22,1) = HCF(23,22) = HCF(68,23) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 647 > 1, we apply the division lemma to 647 and 1, to get

647 = 1 x 647 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 647 is 1

Notice that 1 = HCF(647,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 384 > 1, we apply the division lemma to 384 and 1, to get

384 = 1 x 384 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 384 is 1

Notice that 1 = HCF(384,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 23, 68, 647, 384 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 23, 68, 647, 384?

Answer: HCF of 23, 68, 647, 384 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 23, 68, 647, 384 using Euclid's Algorithm?

Answer: For arbitrary numbers 23, 68, 647, 384 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.