Highest Common Factor of 23, 99, 672, 738 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 23, 99, 672, 738 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 23, 99, 672, 738 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 23, 99, 672, 738 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 23, 99, 672, 738 is 1.

HCF(23, 99, 672, 738) = 1

HCF of 23, 99, 672, 738 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 23, 99, 672, 738 is 1.

Highest Common Factor of 23,99,672,738 using Euclid's algorithm

Highest Common Factor of 23,99,672,738 is 1

Step 1: Since 99 > 23, we apply the division lemma to 99 and 23, to get

99 = 23 x 4 + 7

Step 2: Since the reminder 23 ≠ 0, we apply division lemma to 7 and 23, to get

23 = 7 x 3 + 2

Step 3: We consider the new divisor 7 and the new remainder 2, and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 23 and 99 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(23,7) = HCF(99,23) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 672 > 1, we apply the division lemma to 672 and 1, to get

672 = 1 x 672 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 672 is 1

Notice that 1 = HCF(672,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 738 > 1, we apply the division lemma to 738 and 1, to get

738 = 1 x 738 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 738 is 1

Notice that 1 = HCF(738,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 23, 99, 672, 738 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 23, 99, 672, 738?

Answer: HCF of 23, 99, 672, 738 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 23, 99, 672, 738 using Euclid's Algorithm?

Answer: For arbitrary numbers 23, 99, 672, 738 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.