Highest Common Factor of 230, 808, 718, 333 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 230, 808, 718, 333 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 230, 808, 718, 333 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 230, 808, 718, 333 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 230, 808, 718, 333 is 1.

HCF(230, 808, 718, 333) = 1

HCF of 230, 808, 718, 333 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 230, 808, 718, 333 is 1.

Highest Common Factor of 230,808,718,333 using Euclid's algorithm

Highest Common Factor of 230,808,718,333 is 1

Step 1: Since 808 > 230, we apply the division lemma to 808 and 230, to get

808 = 230 x 3 + 118

Step 2: Since the reminder 230 ≠ 0, we apply division lemma to 118 and 230, to get

230 = 118 x 1 + 112

Step 3: We consider the new divisor 118 and the new remainder 112, and apply the division lemma to get

118 = 112 x 1 + 6

We consider the new divisor 112 and the new remainder 6,and apply the division lemma to get

112 = 6 x 18 + 4

We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get

6 = 4 x 1 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 230 and 808 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(112,6) = HCF(118,112) = HCF(230,118) = HCF(808,230) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 718 > 2, we apply the division lemma to 718 and 2, to get

718 = 2 x 359 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 718 is 2

Notice that 2 = HCF(718,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 333 > 2, we apply the division lemma to 333 and 2, to get

333 = 2 x 166 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 333 is 1

Notice that 1 = HCF(2,1) = HCF(333,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 230, 808, 718, 333 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 230, 808, 718, 333?

Answer: HCF of 230, 808, 718, 333 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 230, 808, 718, 333 using Euclid's Algorithm?

Answer: For arbitrary numbers 230, 808, 718, 333 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.