Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 233, 369, 645 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 233, 369, 645 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 233, 369, 645 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 233, 369, 645 is 1.
HCF(233, 369, 645) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 233, 369, 645 is 1.
Step 1: Since 369 > 233, we apply the division lemma to 369 and 233, to get
369 = 233 x 1 + 136
Step 2: Since the reminder 233 ≠ 0, we apply division lemma to 136 and 233, to get
233 = 136 x 1 + 97
Step 3: We consider the new divisor 136 and the new remainder 97, and apply the division lemma to get
136 = 97 x 1 + 39
We consider the new divisor 97 and the new remainder 39,and apply the division lemma to get
97 = 39 x 2 + 19
We consider the new divisor 39 and the new remainder 19,and apply the division lemma to get
39 = 19 x 2 + 1
We consider the new divisor 19 and the new remainder 1,and apply the division lemma to get
19 = 1 x 19 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 233 and 369 is 1
Notice that 1 = HCF(19,1) = HCF(39,19) = HCF(97,39) = HCF(136,97) = HCF(233,136) = HCF(369,233) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 645 > 1, we apply the division lemma to 645 and 1, to get
645 = 1 x 645 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 645 is 1
Notice that 1 = HCF(645,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 233, 369, 645?
Answer: HCF of 233, 369, 645 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 233, 369, 645 using Euclid's Algorithm?
Answer: For arbitrary numbers 233, 369, 645 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.