Highest Common Factor of 237, 759, 472 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 237, 759, 472 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 237, 759, 472 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 237, 759, 472 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 237, 759, 472 is 1.

HCF(237, 759, 472) = 1

HCF of 237, 759, 472 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 237, 759, 472 is 1.

Highest Common Factor of 237,759,472 using Euclid's algorithm

Highest Common Factor of 237,759,472 is 1

Step 1: Since 759 > 237, we apply the division lemma to 759 and 237, to get

759 = 237 x 3 + 48

Step 2: Since the reminder 237 ≠ 0, we apply division lemma to 48 and 237, to get

237 = 48 x 4 + 45

Step 3: We consider the new divisor 48 and the new remainder 45, and apply the division lemma to get

48 = 45 x 1 + 3

We consider the new divisor 45 and the new remainder 3, and apply the division lemma to get

45 = 3 x 15 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 237 and 759 is 3

Notice that 3 = HCF(45,3) = HCF(48,45) = HCF(237,48) = HCF(759,237) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 472 > 3, we apply the division lemma to 472 and 3, to get

472 = 3 x 157 + 1

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 472 is 1

Notice that 1 = HCF(3,1) = HCF(472,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 237, 759, 472 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 237, 759, 472?

Answer: HCF of 237, 759, 472 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 237, 759, 472 using Euclid's Algorithm?

Answer: For arbitrary numbers 237, 759, 472 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.