Highest Common Factor of 238, 323, 641 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 238, 323, 641 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 238, 323, 641 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 238, 323, 641 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 238, 323, 641 is 1.

HCF(238, 323, 641) = 1

HCF of 238, 323, 641 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 238, 323, 641 is 1.

Highest Common Factor of 238,323,641 using Euclid's algorithm

Highest Common Factor of 238,323,641 is 1

Step 1: Since 323 > 238, we apply the division lemma to 323 and 238, to get

323 = 238 x 1 + 85

Step 2: Since the reminder 238 ≠ 0, we apply division lemma to 85 and 238, to get

238 = 85 x 2 + 68

Step 3: We consider the new divisor 85 and the new remainder 68, and apply the division lemma to get

85 = 68 x 1 + 17

We consider the new divisor 68 and the new remainder 17, and apply the division lemma to get

68 = 17 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 17, the HCF of 238 and 323 is 17

Notice that 17 = HCF(68,17) = HCF(85,68) = HCF(238,85) = HCF(323,238) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 641 > 17, we apply the division lemma to 641 and 17, to get

641 = 17 x 37 + 12

Step 2: Since the reminder 17 ≠ 0, we apply division lemma to 12 and 17, to get

17 = 12 x 1 + 5

Step 3: We consider the new divisor 12 and the new remainder 5, and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 17 and 641 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(17,12) = HCF(641,17) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 238, 323, 641 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 238, 323, 641?

Answer: HCF of 238, 323, 641 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 238, 323, 641 using Euclid's Algorithm?

Answer: For arbitrary numbers 238, 323, 641 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.