Highest Common Factor of 242, 262, 615, 28 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 242, 262, 615, 28 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 242, 262, 615, 28 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 242, 262, 615, 28 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 242, 262, 615, 28 is 1.

HCF(242, 262, 615, 28) = 1

HCF of 242, 262, 615, 28 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 242, 262, 615, 28 is 1.

Highest Common Factor of 242,262,615,28 using Euclid's algorithm

Highest Common Factor of 242,262,615,28 is 1

Step 1: Since 262 > 242, we apply the division lemma to 262 and 242, to get

262 = 242 x 1 + 20

Step 2: Since the reminder 242 ≠ 0, we apply division lemma to 20 and 242, to get

242 = 20 x 12 + 2

Step 3: We consider the new divisor 20 and the new remainder 2, and apply the division lemma to get

20 = 2 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 242 and 262 is 2

Notice that 2 = HCF(20,2) = HCF(242,20) = HCF(262,242) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 615 > 2, we apply the division lemma to 615 and 2, to get

615 = 2 x 307 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 615 is 1

Notice that 1 = HCF(2,1) = HCF(615,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 28 > 1, we apply the division lemma to 28 and 1, to get

28 = 1 x 28 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 28 is 1

Notice that 1 = HCF(28,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 242, 262, 615, 28 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 242, 262, 615, 28?

Answer: HCF of 242, 262, 615, 28 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 242, 262, 615, 28 using Euclid's Algorithm?

Answer: For arbitrary numbers 242, 262, 615, 28 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.