Highest Common Factor of 242, 879, 738 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 242, 879, 738 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 242, 879, 738 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 242, 879, 738 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 242, 879, 738 is 1.

HCF(242, 879, 738) = 1

HCF of 242, 879, 738 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 242, 879, 738 is 1.

Highest Common Factor of 242,879,738 using Euclid's algorithm

Highest Common Factor of 242,879,738 is 1

Step 1: Since 879 > 242, we apply the division lemma to 879 and 242, to get

879 = 242 x 3 + 153

Step 2: Since the reminder 242 ≠ 0, we apply division lemma to 153 and 242, to get

242 = 153 x 1 + 89

Step 3: We consider the new divisor 153 and the new remainder 89, and apply the division lemma to get

153 = 89 x 1 + 64

We consider the new divisor 89 and the new remainder 64,and apply the division lemma to get

89 = 64 x 1 + 25

We consider the new divisor 64 and the new remainder 25,and apply the division lemma to get

64 = 25 x 2 + 14

We consider the new divisor 25 and the new remainder 14,and apply the division lemma to get

25 = 14 x 1 + 11

We consider the new divisor 14 and the new remainder 11,and apply the division lemma to get

14 = 11 x 1 + 3

We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get

11 = 3 x 3 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 242 and 879 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(14,11) = HCF(25,14) = HCF(64,25) = HCF(89,64) = HCF(153,89) = HCF(242,153) = HCF(879,242) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 738 > 1, we apply the division lemma to 738 and 1, to get

738 = 1 x 738 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 738 is 1

Notice that 1 = HCF(738,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 242, 879, 738 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 242, 879, 738?

Answer: HCF of 242, 879, 738 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 242, 879, 738 using Euclid's Algorithm?

Answer: For arbitrary numbers 242, 879, 738 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.