Highest Common Factor of 243, 793, 642 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 243, 793, 642 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 243, 793, 642 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 243, 793, 642 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 243, 793, 642 is 1.

HCF(243, 793, 642) = 1

HCF of 243, 793, 642 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 243, 793, 642 is 1.

Highest Common Factor of 243,793,642 using Euclid's algorithm

Highest Common Factor of 243,793,642 is 1

Step 1: Since 793 > 243, we apply the division lemma to 793 and 243, to get

793 = 243 x 3 + 64

Step 2: Since the reminder 243 ≠ 0, we apply division lemma to 64 and 243, to get

243 = 64 x 3 + 51

Step 3: We consider the new divisor 64 and the new remainder 51, and apply the division lemma to get

64 = 51 x 1 + 13

We consider the new divisor 51 and the new remainder 13,and apply the division lemma to get

51 = 13 x 3 + 12

We consider the new divisor 13 and the new remainder 12,and apply the division lemma to get

13 = 12 x 1 + 1

We consider the new divisor 12 and the new remainder 1,and apply the division lemma to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 243 and 793 is 1

Notice that 1 = HCF(12,1) = HCF(13,12) = HCF(51,13) = HCF(64,51) = HCF(243,64) = HCF(793,243) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 642 > 1, we apply the division lemma to 642 and 1, to get

642 = 1 x 642 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 642 is 1

Notice that 1 = HCF(642,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 243, 793, 642 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 243, 793, 642?

Answer: HCF of 243, 793, 642 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 243, 793, 642 using Euclid's Algorithm?

Answer: For arbitrary numbers 243, 793, 642 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.