Highest Common Factor of 2443, 5739 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2443, 5739 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2443, 5739 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2443, 5739 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2443, 5739 is 1.

HCF(2443, 5739) = 1

HCF of 2443, 5739 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2443, 5739 is 1.

Highest Common Factor of 2443,5739 using Euclid's algorithm

Highest Common Factor of 2443,5739 is 1

Step 1: Since 5739 > 2443, we apply the division lemma to 5739 and 2443, to get

5739 = 2443 x 2 + 853

Step 2: Since the reminder 2443 ≠ 0, we apply division lemma to 853 and 2443, to get

2443 = 853 x 2 + 737

Step 3: We consider the new divisor 853 and the new remainder 737, and apply the division lemma to get

853 = 737 x 1 + 116

We consider the new divisor 737 and the new remainder 116,and apply the division lemma to get

737 = 116 x 6 + 41

We consider the new divisor 116 and the new remainder 41,and apply the division lemma to get

116 = 41 x 2 + 34

We consider the new divisor 41 and the new remainder 34,and apply the division lemma to get

41 = 34 x 1 + 7

We consider the new divisor 34 and the new remainder 7,and apply the division lemma to get

34 = 7 x 4 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2443 and 5739 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(34,7) = HCF(41,34) = HCF(116,41) = HCF(737,116) = HCF(853,737) = HCF(2443,853) = HCF(5739,2443) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2443, 5739 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2443, 5739?

Answer: HCF of 2443, 5739 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2443, 5739 using Euclid's Algorithm?

Answer: For arbitrary numbers 2443, 5739 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.