Highest Common Factor of 245, 7996, 6647 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 245, 7996, 6647 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 245, 7996, 6647 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 245, 7996, 6647 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 245, 7996, 6647 is 1.

HCF(245, 7996, 6647) = 1

HCF of 245, 7996, 6647 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 245, 7996, 6647 is 1.

Highest Common Factor of 245,7996,6647 using Euclid's algorithm

Highest Common Factor of 245,7996,6647 is 1

Step 1: Since 7996 > 245, we apply the division lemma to 7996 and 245, to get

7996 = 245 x 32 + 156

Step 2: Since the reminder 245 ≠ 0, we apply division lemma to 156 and 245, to get

245 = 156 x 1 + 89

Step 3: We consider the new divisor 156 and the new remainder 89, and apply the division lemma to get

156 = 89 x 1 + 67

We consider the new divisor 89 and the new remainder 67,and apply the division lemma to get

89 = 67 x 1 + 22

We consider the new divisor 67 and the new remainder 22,and apply the division lemma to get

67 = 22 x 3 + 1

We consider the new divisor 22 and the new remainder 1,and apply the division lemma to get

22 = 1 x 22 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 245 and 7996 is 1

Notice that 1 = HCF(22,1) = HCF(67,22) = HCF(89,67) = HCF(156,89) = HCF(245,156) = HCF(7996,245) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 6647 > 1, we apply the division lemma to 6647 and 1, to get

6647 = 1 x 6647 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 6647 is 1

Notice that 1 = HCF(6647,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 245, 7996, 6647 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 245, 7996, 6647?

Answer: HCF of 245, 7996, 6647 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 245, 7996, 6647 using Euclid's Algorithm?

Answer: For arbitrary numbers 245, 7996, 6647 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.