Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 248, 675, 441 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 248, 675, 441 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 248, 675, 441 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 248, 675, 441 is 1.
HCF(248, 675, 441) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 248, 675, 441 is 1.
Step 1: Since 675 > 248, we apply the division lemma to 675 and 248, to get
675 = 248 x 2 + 179
Step 2: Since the reminder 248 ≠ 0, we apply division lemma to 179 and 248, to get
248 = 179 x 1 + 69
Step 3: We consider the new divisor 179 and the new remainder 69, and apply the division lemma to get
179 = 69 x 2 + 41
We consider the new divisor 69 and the new remainder 41,and apply the division lemma to get
69 = 41 x 1 + 28
We consider the new divisor 41 and the new remainder 28,and apply the division lemma to get
41 = 28 x 1 + 13
We consider the new divisor 28 and the new remainder 13,and apply the division lemma to get
28 = 13 x 2 + 2
We consider the new divisor 13 and the new remainder 2,and apply the division lemma to get
13 = 2 x 6 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 248 and 675 is 1
Notice that 1 = HCF(2,1) = HCF(13,2) = HCF(28,13) = HCF(41,28) = HCF(69,41) = HCF(179,69) = HCF(248,179) = HCF(675,248) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 441 > 1, we apply the division lemma to 441 and 1, to get
441 = 1 x 441 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 441 is 1
Notice that 1 = HCF(441,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 248, 675, 441?
Answer: HCF of 248, 675, 441 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 248, 675, 441 using Euclid's Algorithm?
Answer: For arbitrary numbers 248, 675, 441 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.