Highest Common Factor of 250, 700, 170 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 250, 700, 170 i.e. 10 the largest integer that leaves a remainder zero for all numbers.

HCF of 250, 700, 170 is 10 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 250, 700, 170 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 250, 700, 170 is 10.

HCF(250, 700, 170) = 10

HCF of 250, 700, 170 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 250, 700, 170 is 10.

Highest Common Factor of 250,700,170 using Euclid's algorithm

Highest Common Factor of 250,700,170 is 10

Step 1: Since 700 > 250, we apply the division lemma to 700 and 250, to get

700 = 250 x 2 + 200

Step 2: Since the reminder 250 ≠ 0, we apply division lemma to 200 and 250, to get

250 = 200 x 1 + 50

Step 3: We consider the new divisor 200 and the new remainder 50, and apply the division lemma to get

200 = 50 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 50, the HCF of 250 and 700 is 50

Notice that 50 = HCF(200,50) = HCF(250,200) = HCF(700,250) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 170 > 50, we apply the division lemma to 170 and 50, to get

170 = 50 x 3 + 20

Step 2: Since the reminder 50 ≠ 0, we apply division lemma to 20 and 50, to get

50 = 20 x 2 + 10

Step 3: We consider the new divisor 20 and the new remainder 10, and apply the division lemma to get

20 = 10 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 10, the HCF of 50 and 170 is 10

Notice that 10 = HCF(20,10) = HCF(50,20) = HCF(170,50) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 250, 700, 170 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 250, 700, 170?

Answer: HCF of 250, 700, 170 is 10 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 250, 700, 170 using Euclid's Algorithm?

Answer: For arbitrary numbers 250, 700, 170 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.