Highest Common Factor of 250, 8138, 8559 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 250, 8138, 8559 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 250, 8138, 8559 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 250, 8138, 8559 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 250, 8138, 8559 is 1.

HCF(250, 8138, 8559) = 1

HCF of 250, 8138, 8559 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 250, 8138, 8559 is 1.

Highest Common Factor of 250,8138,8559 using Euclid's algorithm

Highest Common Factor of 250,8138,8559 is 1

Step 1: Since 8138 > 250, we apply the division lemma to 8138 and 250, to get

8138 = 250 x 32 + 138

Step 2: Since the reminder 250 ≠ 0, we apply division lemma to 138 and 250, to get

250 = 138 x 1 + 112

Step 3: We consider the new divisor 138 and the new remainder 112, and apply the division lemma to get

138 = 112 x 1 + 26

We consider the new divisor 112 and the new remainder 26,and apply the division lemma to get

112 = 26 x 4 + 8

We consider the new divisor 26 and the new remainder 8,and apply the division lemma to get

26 = 8 x 3 + 2

We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 250 and 8138 is 2

Notice that 2 = HCF(8,2) = HCF(26,8) = HCF(112,26) = HCF(138,112) = HCF(250,138) = HCF(8138,250) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 8559 > 2, we apply the division lemma to 8559 and 2, to get

8559 = 2 x 4279 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 8559 is 1

Notice that 1 = HCF(2,1) = HCF(8559,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 250, 8138, 8559 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 250, 8138, 8559?

Answer: HCF of 250, 8138, 8559 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 250, 8138, 8559 using Euclid's Algorithm?

Answer: For arbitrary numbers 250, 8138, 8559 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.