Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 250, 8138, 8559 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 250, 8138, 8559 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 250, 8138, 8559 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 250, 8138, 8559 is 1.
HCF(250, 8138, 8559) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 250, 8138, 8559 is 1.
Step 1: Since 8138 > 250, we apply the division lemma to 8138 and 250, to get
8138 = 250 x 32 + 138
Step 2: Since the reminder 250 ≠ 0, we apply division lemma to 138 and 250, to get
250 = 138 x 1 + 112
Step 3: We consider the new divisor 138 and the new remainder 112, and apply the division lemma to get
138 = 112 x 1 + 26
We consider the new divisor 112 and the new remainder 26,and apply the division lemma to get
112 = 26 x 4 + 8
We consider the new divisor 26 and the new remainder 8,and apply the division lemma to get
26 = 8 x 3 + 2
We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get
8 = 2 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 250 and 8138 is 2
Notice that 2 = HCF(8,2) = HCF(26,8) = HCF(112,26) = HCF(138,112) = HCF(250,138) = HCF(8138,250) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 8559 > 2, we apply the division lemma to 8559 and 2, to get
8559 = 2 x 4279 + 1
Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 8559 is 1
Notice that 1 = HCF(2,1) = HCF(8559,2) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 250, 8138, 8559?
Answer: HCF of 250, 8138, 8559 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 250, 8138, 8559 using Euclid's Algorithm?
Answer: For arbitrary numbers 250, 8138, 8559 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.