Highest Common Factor of 251, 459, 518, 52 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 251, 459, 518, 52 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 251, 459, 518, 52 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 251, 459, 518, 52 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 251, 459, 518, 52 is 1.

HCF(251, 459, 518, 52) = 1

HCF of 251, 459, 518, 52 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 251, 459, 518, 52 is 1.

Highest Common Factor of 251,459,518,52 using Euclid's algorithm

Highest Common Factor of 251,459,518,52 is 1

Step 1: Since 459 > 251, we apply the division lemma to 459 and 251, to get

459 = 251 x 1 + 208

Step 2: Since the reminder 251 ≠ 0, we apply division lemma to 208 and 251, to get

251 = 208 x 1 + 43

Step 3: We consider the new divisor 208 and the new remainder 43, and apply the division lemma to get

208 = 43 x 4 + 36

We consider the new divisor 43 and the new remainder 36,and apply the division lemma to get

43 = 36 x 1 + 7

We consider the new divisor 36 and the new remainder 7,and apply the division lemma to get

36 = 7 x 5 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 251 and 459 is 1

Notice that 1 = HCF(7,1) = HCF(36,7) = HCF(43,36) = HCF(208,43) = HCF(251,208) = HCF(459,251) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 518 > 1, we apply the division lemma to 518 and 1, to get

518 = 1 x 518 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 518 is 1

Notice that 1 = HCF(518,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 52 > 1, we apply the division lemma to 52 and 1, to get

52 = 1 x 52 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 52 is 1

Notice that 1 = HCF(52,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 251, 459, 518, 52 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 251, 459, 518, 52?

Answer: HCF of 251, 459, 518, 52 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 251, 459, 518, 52 using Euclid's Algorithm?

Answer: For arbitrary numbers 251, 459, 518, 52 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.