Highest Common Factor of 252, 460, 599 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 252, 460, 599 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 252, 460, 599 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 252, 460, 599 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 252, 460, 599 is 1.

HCF(252, 460, 599) = 1

HCF of 252, 460, 599 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 252, 460, 599 is 1.

Highest Common Factor of 252,460,599 using Euclid's algorithm

Highest Common Factor of 252,460,599 is 1

Step 1: Since 460 > 252, we apply the division lemma to 460 and 252, to get

460 = 252 x 1 + 208

Step 2: Since the reminder 252 ≠ 0, we apply division lemma to 208 and 252, to get

252 = 208 x 1 + 44

Step 3: We consider the new divisor 208 and the new remainder 44, and apply the division lemma to get

208 = 44 x 4 + 32

We consider the new divisor 44 and the new remainder 32,and apply the division lemma to get

44 = 32 x 1 + 12

We consider the new divisor 32 and the new remainder 12,and apply the division lemma to get

32 = 12 x 2 + 8

We consider the new divisor 12 and the new remainder 8,and apply the division lemma to get

12 = 8 x 1 + 4

We consider the new divisor 8 and the new remainder 4,and apply the division lemma to get

8 = 4 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 252 and 460 is 4

Notice that 4 = HCF(8,4) = HCF(12,8) = HCF(32,12) = HCF(44,32) = HCF(208,44) = HCF(252,208) = HCF(460,252) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 599 > 4, we apply the division lemma to 599 and 4, to get

599 = 4 x 149 + 3

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 3 and 4, to get

4 = 3 x 1 + 1

Step 3: We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4 and 599 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(599,4) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 252, 460, 599 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 252, 460, 599?

Answer: HCF of 252, 460, 599 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 252, 460, 599 using Euclid's Algorithm?

Answer: For arbitrary numbers 252, 460, 599 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.