Highest Common Factor of 2522, 8671 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2522, 8671 i.e. 13 the largest integer that leaves a remainder zero for all numbers.

HCF of 2522, 8671 is 13 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2522, 8671 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2522, 8671 is 13.

HCF(2522, 8671) = 13

HCF of 2522, 8671 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2522, 8671 is 13.

Highest Common Factor of 2522,8671 using Euclid's algorithm

Highest Common Factor of 2522,8671 is 13

Step 1: Since 8671 > 2522, we apply the division lemma to 8671 and 2522, to get

8671 = 2522 x 3 + 1105

Step 2: Since the reminder 2522 ≠ 0, we apply division lemma to 1105 and 2522, to get

2522 = 1105 x 2 + 312

Step 3: We consider the new divisor 1105 and the new remainder 312, and apply the division lemma to get

1105 = 312 x 3 + 169

We consider the new divisor 312 and the new remainder 169,and apply the division lemma to get

312 = 169 x 1 + 143

We consider the new divisor 169 and the new remainder 143,and apply the division lemma to get

169 = 143 x 1 + 26

We consider the new divisor 143 and the new remainder 26,and apply the division lemma to get

143 = 26 x 5 + 13

We consider the new divisor 26 and the new remainder 13,and apply the division lemma to get

26 = 13 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 13, the HCF of 2522 and 8671 is 13

Notice that 13 = HCF(26,13) = HCF(143,26) = HCF(169,143) = HCF(312,169) = HCF(1105,312) = HCF(2522,1105) = HCF(8671,2522) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2522, 8671 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2522, 8671?

Answer: HCF of 2522, 8671 is 13 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2522, 8671 using Euclid's Algorithm?

Answer: For arbitrary numbers 2522, 8671 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.