Highest Common Factor of 2549, 2008 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2549, 2008 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2549, 2008 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2549, 2008 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2549, 2008 is 1.

HCF(2549, 2008) = 1

HCF of 2549, 2008 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2549, 2008 is 1.

Highest Common Factor of 2549,2008 using Euclid's algorithm

Highest Common Factor of 2549,2008 is 1

Step 1: Since 2549 > 2008, we apply the division lemma to 2549 and 2008, to get

2549 = 2008 x 1 + 541

Step 2: Since the reminder 2008 ≠ 0, we apply division lemma to 541 and 2008, to get

2008 = 541 x 3 + 385

Step 3: We consider the new divisor 541 and the new remainder 385, and apply the division lemma to get

541 = 385 x 1 + 156

We consider the new divisor 385 and the new remainder 156,and apply the division lemma to get

385 = 156 x 2 + 73

We consider the new divisor 156 and the new remainder 73,and apply the division lemma to get

156 = 73 x 2 + 10

We consider the new divisor 73 and the new remainder 10,and apply the division lemma to get

73 = 10 x 7 + 3

We consider the new divisor 10 and the new remainder 3,and apply the division lemma to get

10 = 3 x 3 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2549 and 2008 is 1

Notice that 1 = HCF(3,1) = HCF(10,3) = HCF(73,10) = HCF(156,73) = HCF(385,156) = HCF(541,385) = HCF(2008,541) = HCF(2549,2008) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2549, 2008 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2549, 2008?

Answer: HCF of 2549, 2008 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2549, 2008 using Euclid's Algorithm?

Answer: For arbitrary numbers 2549, 2008 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.