Highest Common Factor of 2563, 1968 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2563, 1968 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2563, 1968 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2563, 1968 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2563, 1968 is 1.

HCF(2563, 1968) = 1

HCF of 2563, 1968 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2563, 1968 is 1.

Highest Common Factor of 2563,1968 using Euclid's algorithm

Highest Common Factor of 2563,1968 is 1

Step 1: Since 2563 > 1968, we apply the division lemma to 2563 and 1968, to get

2563 = 1968 x 1 + 595

Step 2: Since the reminder 1968 ≠ 0, we apply division lemma to 595 and 1968, to get

1968 = 595 x 3 + 183

Step 3: We consider the new divisor 595 and the new remainder 183, and apply the division lemma to get

595 = 183 x 3 + 46

We consider the new divisor 183 and the new remainder 46,and apply the division lemma to get

183 = 46 x 3 + 45

We consider the new divisor 46 and the new remainder 45,and apply the division lemma to get

46 = 45 x 1 + 1

We consider the new divisor 45 and the new remainder 1,and apply the division lemma to get

45 = 1 x 45 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2563 and 1968 is 1

Notice that 1 = HCF(45,1) = HCF(46,45) = HCF(183,46) = HCF(595,183) = HCF(1968,595) = HCF(2563,1968) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2563, 1968 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2563, 1968?

Answer: HCF of 2563, 1968 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2563, 1968 using Euclid's Algorithm?

Answer: For arbitrary numbers 2563, 1968 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.