Highest Common Factor of 257, 928, 345 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 257, 928, 345 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 257, 928, 345 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 257, 928, 345 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 257, 928, 345 is 1.

HCF(257, 928, 345) = 1

HCF of 257, 928, 345 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 257, 928, 345 is 1.

Highest Common Factor of 257,928,345 using Euclid's algorithm

Highest Common Factor of 257,928,345 is 1

Step 1: Since 928 > 257, we apply the division lemma to 928 and 257, to get

928 = 257 x 3 + 157

Step 2: Since the reminder 257 ≠ 0, we apply division lemma to 157 and 257, to get

257 = 157 x 1 + 100

Step 3: We consider the new divisor 157 and the new remainder 100, and apply the division lemma to get

157 = 100 x 1 + 57

We consider the new divisor 100 and the new remainder 57,and apply the division lemma to get

100 = 57 x 1 + 43

We consider the new divisor 57 and the new remainder 43,and apply the division lemma to get

57 = 43 x 1 + 14

We consider the new divisor 43 and the new remainder 14,and apply the division lemma to get

43 = 14 x 3 + 1

We consider the new divisor 14 and the new remainder 1,and apply the division lemma to get

14 = 1 x 14 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 257 and 928 is 1

Notice that 1 = HCF(14,1) = HCF(43,14) = HCF(57,43) = HCF(100,57) = HCF(157,100) = HCF(257,157) = HCF(928,257) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 345 > 1, we apply the division lemma to 345 and 1, to get

345 = 1 x 345 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 345 is 1

Notice that 1 = HCF(345,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 257, 928, 345 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 257, 928, 345?

Answer: HCF of 257, 928, 345 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 257, 928, 345 using Euclid's Algorithm?

Answer: For arbitrary numbers 257, 928, 345 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.