Highest Common Factor of 2573, 8741 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2573, 8741 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2573, 8741 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2573, 8741 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2573, 8741 is 1.

HCF(2573, 8741) = 1

HCF of 2573, 8741 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2573, 8741 is 1.

Highest Common Factor of 2573,8741 using Euclid's algorithm

Highest Common Factor of 2573,8741 is 1

Step 1: Since 8741 > 2573, we apply the division lemma to 8741 and 2573, to get

8741 = 2573 x 3 + 1022

Step 2: Since the reminder 2573 ≠ 0, we apply division lemma to 1022 and 2573, to get

2573 = 1022 x 2 + 529

Step 3: We consider the new divisor 1022 and the new remainder 529, and apply the division lemma to get

1022 = 529 x 1 + 493

We consider the new divisor 529 and the new remainder 493,and apply the division lemma to get

529 = 493 x 1 + 36

We consider the new divisor 493 and the new remainder 36,and apply the division lemma to get

493 = 36 x 13 + 25

We consider the new divisor 36 and the new remainder 25,and apply the division lemma to get

36 = 25 x 1 + 11

We consider the new divisor 25 and the new remainder 11,and apply the division lemma to get

25 = 11 x 2 + 3

We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get

11 = 3 x 3 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2573 and 8741 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(25,11) = HCF(36,25) = HCF(493,36) = HCF(529,493) = HCF(1022,529) = HCF(2573,1022) = HCF(8741,2573) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2573, 8741 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2573, 8741?

Answer: HCF of 2573, 8741 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2573, 8741 using Euclid's Algorithm?

Answer: For arbitrary numbers 2573, 8741 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.