Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 262, 164, 844, 207 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 262, 164, 844, 207 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 262, 164, 844, 207 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 262, 164, 844, 207 is 1.
HCF(262, 164, 844, 207) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 262, 164, 844, 207 is 1.
Step 1: Since 262 > 164, we apply the division lemma to 262 and 164, to get
262 = 164 x 1 + 98
Step 2: Since the reminder 164 ≠ 0, we apply division lemma to 98 and 164, to get
164 = 98 x 1 + 66
Step 3: We consider the new divisor 98 and the new remainder 66, and apply the division lemma to get
98 = 66 x 1 + 32
We consider the new divisor 66 and the new remainder 32,and apply the division lemma to get
66 = 32 x 2 + 2
We consider the new divisor 32 and the new remainder 2,and apply the division lemma to get
32 = 2 x 16 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 262 and 164 is 2
Notice that 2 = HCF(32,2) = HCF(66,32) = HCF(98,66) = HCF(164,98) = HCF(262,164) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 844 > 2, we apply the division lemma to 844 and 2, to get
844 = 2 x 422 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 844 is 2
Notice that 2 = HCF(844,2) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 207 > 2, we apply the division lemma to 207 and 2, to get
207 = 2 x 103 + 1
Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 207 is 1
Notice that 1 = HCF(2,1) = HCF(207,2) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 262, 164, 844, 207?
Answer: HCF of 262, 164, 844, 207 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 262, 164, 844, 207 using Euclid's Algorithm?
Answer: For arbitrary numbers 262, 164, 844, 207 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.