Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2626, 3981, 81249 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 2626, 3981, 81249 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 2626, 3981, 81249 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 2626, 3981, 81249 is 1.
HCF(2626, 3981, 81249) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 2626, 3981, 81249 is 1.
Step 1: Since 3981 > 2626, we apply the division lemma to 3981 and 2626, to get
3981 = 2626 x 1 + 1355
Step 2: Since the reminder 2626 ≠ 0, we apply division lemma to 1355 and 2626, to get
2626 = 1355 x 1 + 1271
Step 3: We consider the new divisor 1355 and the new remainder 1271, and apply the division lemma to get
1355 = 1271 x 1 + 84
We consider the new divisor 1271 and the new remainder 84,and apply the division lemma to get
1271 = 84 x 15 + 11
We consider the new divisor 84 and the new remainder 11,and apply the division lemma to get
84 = 11 x 7 + 7
We consider the new divisor 11 and the new remainder 7,and apply the division lemma to get
11 = 7 x 1 + 4
We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get
7 = 4 x 1 + 3
We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get
4 = 3 x 1 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2626 and 3981 is 1
Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(11,7) = HCF(84,11) = HCF(1271,84) = HCF(1355,1271) = HCF(2626,1355) = HCF(3981,2626) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 81249 > 1, we apply the division lemma to 81249 and 1, to get
81249 = 1 x 81249 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 81249 is 1
Notice that 1 = HCF(81249,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 2626, 3981, 81249?
Answer: HCF of 2626, 3981, 81249 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 2626, 3981, 81249 using Euclid's Algorithm?
Answer: For arbitrary numbers 2626, 3981, 81249 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.