Highest Common Factor of 264, 717, 814 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 264, 717, 814 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 264, 717, 814 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 264, 717, 814 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 264, 717, 814 is 1.

HCF(264, 717, 814) = 1

HCF of 264, 717, 814 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 264, 717, 814 is 1.

Highest Common Factor of 264,717,814 using Euclid's algorithm

Highest Common Factor of 264,717,814 is 1

Step 1: Since 717 > 264, we apply the division lemma to 717 and 264, to get

717 = 264 x 2 + 189

Step 2: Since the reminder 264 ≠ 0, we apply division lemma to 189 and 264, to get

264 = 189 x 1 + 75

Step 3: We consider the new divisor 189 and the new remainder 75, and apply the division lemma to get

189 = 75 x 2 + 39

We consider the new divisor 75 and the new remainder 39,and apply the division lemma to get

75 = 39 x 1 + 36

We consider the new divisor 39 and the new remainder 36,and apply the division lemma to get

39 = 36 x 1 + 3

We consider the new divisor 36 and the new remainder 3,and apply the division lemma to get

36 = 3 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 264 and 717 is 3

Notice that 3 = HCF(36,3) = HCF(39,36) = HCF(75,39) = HCF(189,75) = HCF(264,189) = HCF(717,264) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 814 > 3, we apply the division lemma to 814 and 3, to get

814 = 3 x 271 + 1

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 814 is 1

Notice that 1 = HCF(3,1) = HCF(814,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 264, 717, 814 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 264, 717, 814?

Answer: HCF of 264, 717, 814 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 264, 717, 814 using Euclid's Algorithm?

Answer: For arbitrary numbers 264, 717, 814 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.