Highest Common Factor of 264, 838, 211 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 264, 838, 211 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 264, 838, 211 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 264, 838, 211 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 264, 838, 211 is 1.

HCF(264, 838, 211) = 1

HCF of 264, 838, 211 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 264, 838, 211 is 1.

Highest Common Factor of 264,838,211 using Euclid's algorithm

Highest Common Factor of 264,838,211 is 1

Step 1: Since 838 > 264, we apply the division lemma to 838 and 264, to get

838 = 264 x 3 + 46

Step 2: Since the reminder 264 ≠ 0, we apply division lemma to 46 and 264, to get

264 = 46 x 5 + 34

Step 3: We consider the new divisor 46 and the new remainder 34, and apply the division lemma to get

46 = 34 x 1 + 12

We consider the new divisor 34 and the new remainder 12,and apply the division lemma to get

34 = 12 x 2 + 10

We consider the new divisor 12 and the new remainder 10,and apply the division lemma to get

12 = 10 x 1 + 2

We consider the new divisor 10 and the new remainder 2,and apply the division lemma to get

10 = 2 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 264 and 838 is 2

Notice that 2 = HCF(10,2) = HCF(12,10) = HCF(34,12) = HCF(46,34) = HCF(264,46) = HCF(838,264) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 211 > 2, we apply the division lemma to 211 and 2, to get

211 = 2 x 105 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 211 is 1

Notice that 1 = HCF(2,1) = HCF(211,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 264, 838, 211 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 264, 838, 211?

Answer: HCF of 264, 838, 211 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 264, 838, 211 using Euclid's Algorithm?

Answer: For arbitrary numbers 264, 838, 211 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.