Highest Common Factor of 2658, 9188 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2658, 9188 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 2658, 9188 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2658, 9188 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2658, 9188 is 2.

HCF(2658, 9188) = 2

HCF of 2658, 9188 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2658, 9188 is 2.

Highest Common Factor of 2658,9188 using Euclid's algorithm

Highest Common Factor of 2658,9188 is 2

Step 1: Since 9188 > 2658, we apply the division lemma to 9188 and 2658, to get

9188 = 2658 x 3 + 1214

Step 2: Since the reminder 2658 ≠ 0, we apply division lemma to 1214 and 2658, to get

2658 = 1214 x 2 + 230

Step 3: We consider the new divisor 1214 and the new remainder 230, and apply the division lemma to get

1214 = 230 x 5 + 64

We consider the new divisor 230 and the new remainder 64,and apply the division lemma to get

230 = 64 x 3 + 38

We consider the new divisor 64 and the new remainder 38,and apply the division lemma to get

64 = 38 x 1 + 26

We consider the new divisor 38 and the new remainder 26,and apply the division lemma to get

38 = 26 x 1 + 12

We consider the new divisor 26 and the new remainder 12,and apply the division lemma to get

26 = 12 x 2 + 2

We consider the new divisor 12 and the new remainder 2,and apply the division lemma to get

12 = 2 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2658 and 9188 is 2

Notice that 2 = HCF(12,2) = HCF(26,12) = HCF(38,26) = HCF(64,38) = HCF(230,64) = HCF(1214,230) = HCF(2658,1214) = HCF(9188,2658) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2658, 9188 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2658, 9188?

Answer: HCF of 2658, 9188 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2658, 9188 using Euclid's Algorithm?

Answer: For arbitrary numbers 2658, 9188 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.