Highest Common Factor of 266, 399, 620 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 266, 399, 620 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 266, 399, 620 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 266, 399, 620 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 266, 399, 620 is 1.

HCF(266, 399, 620) = 1

HCF of 266, 399, 620 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 266, 399, 620 is 1.

Highest Common Factor of 266,399,620 using Euclid's algorithm

Highest Common Factor of 266,399,620 is 1

Step 1: Since 399 > 266, we apply the division lemma to 399 and 266, to get

399 = 266 x 1 + 133

Step 2: Since the reminder 266 ≠ 0, we apply division lemma to 133 and 266, to get

266 = 133 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 133, the HCF of 266 and 399 is 133

Notice that 133 = HCF(266,133) = HCF(399,266) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 620 > 133, we apply the division lemma to 620 and 133, to get

620 = 133 x 4 + 88

Step 2: Since the reminder 133 ≠ 0, we apply division lemma to 88 and 133, to get

133 = 88 x 1 + 45

Step 3: We consider the new divisor 88 and the new remainder 45, and apply the division lemma to get

88 = 45 x 1 + 43

We consider the new divisor 45 and the new remainder 43,and apply the division lemma to get

45 = 43 x 1 + 2

We consider the new divisor 43 and the new remainder 2,and apply the division lemma to get

43 = 2 x 21 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 133 and 620 is 1

Notice that 1 = HCF(2,1) = HCF(43,2) = HCF(45,43) = HCF(88,45) = HCF(133,88) = HCF(620,133) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 266, 399, 620 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 266, 399, 620?

Answer: HCF of 266, 399, 620 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 266, 399, 620 using Euclid's Algorithm?

Answer: For arbitrary numbers 266, 399, 620 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.