Highest Common Factor of 268, 578, 494, 381 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 268, 578, 494, 381 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 268, 578, 494, 381 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 268, 578, 494, 381 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 268, 578, 494, 381 is 1.

HCF(268, 578, 494, 381) = 1

HCF of 268, 578, 494, 381 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 268, 578, 494, 381 is 1.

Highest Common Factor of 268,578,494,381 using Euclid's algorithm

Highest Common Factor of 268,578,494,381 is 1

Step 1: Since 578 > 268, we apply the division lemma to 578 and 268, to get

578 = 268 x 2 + 42

Step 2: Since the reminder 268 ≠ 0, we apply division lemma to 42 and 268, to get

268 = 42 x 6 + 16

Step 3: We consider the new divisor 42 and the new remainder 16, and apply the division lemma to get

42 = 16 x 2 + 10

We consider the new divisor 16 and the new remainder 10,and apply the division lemma to get

16 = 10 x 1 + 6

We consider the new divisor 10 and the new remainder 6,and apply the division lemma to get

10 = 6 x 1 + 4

We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get

6 = 4 x 1 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 268 and 578 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(10,6) = HCF(16,10) = HCF(42,16) = HCF(268,42) = HCF(578,268) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 494 > 2, we apply the division lemma to 494 and 2, to get

494 = 2 x 247 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 494 is 2

Notice that 2 = HCF(494,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 381 > 2, we apply the division lemma to 381 and 2, to get

381 = 2 x 190 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 381 is 1

Notice that 1 = HCF(2,1) = HCF(381,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 268, 578, 494, 381 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 268, 578, 494, 381?

Answer: HCF of 268, 578, 494, 381 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 268, 578, 494, 381 using Euclid's Algorithm?

Answer: For arbitrary numbers 268, 578, 494, 381 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.