Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 27, 40, 777, 781 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 27, 40, 777, 781 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 27, 40, 777, 781 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 27, 40, 777, 781 is 1.
HCF(27, 40, 777, 781) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 27, 40, 777, 781 is 1.
Step 1: Since 40 > 27, we apply the division lemma to 40 and 27, to get
40 = 27 x 1 + 13
Step 2: Since the reminder 27 ≠ 0, we apply division lemma to 13 and 27, to get
27 = 13 x 2 + 1
Step 3: We consider the new divisor 13 and the new remainder 1, and apply the division lemma to get
13 = 1 x 13 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 27 and 40 is 1
Notice that 1 = HCF(13,1) = HCF(27,13) = HCF(40,27) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 777 > 1, we apply the division lemma to 777 and 1, to get
777 = 1 x 777 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 777 is 1
Notice that 1 = HCF(777,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 781 > 1, we apply the division lemma to 781 and 1, to get
781 = 1 x 781 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 781 is 1
Notice that 1 = HCF(781,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 27, 40, 777, 781?
Answer: HCF of 27, 40, 777, 781 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 27, 40, 777, 781 using Euclid's Algorithm?
Answer: For arbitrary numbers 27, 40, 777, 781 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.