Highest Common Factor of 27, 68, 421, 395 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 27, 68, 421, 395 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 27, 68, 421, 395 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 27, 68, 421, 395 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 27, 68, 421, 395 is 1.

HCF(27, 68, 421, 395) = 1

HCF of 27, 68, 421, 395 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 27, 68, 421, 395 is 1.

Highest Common Factor of 27,68,421,395 using Euclid's algorithm

Highest Common Factor of 27,68,421,395 is 1

Step 1: Since 68 > 27, we apply the division lemma to 68 and 27, to get

68 = 27 x 2 + 14

Step 2: Since the reminder 27 ≠ 0, we apply division lemma to 14 and 27, to get

27 = 14 x 1 + 13

Step 3: We consider the new divisor 14 and the new remainder 13, and apply the division lemma to get

14 = 13 x 1 + 1

We consider the new divisor 13 and the new remainder 1, and apply the division lemma to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 27 and 68 is 1

Notice that 1 = HCF(13,1) = HCF(14,13) = HCF(27,14) = HCF(68,27) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 421 > 1, we apply the division lemma to 421 and 1, to get

421 = 1 x 421 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 421 is 1

Notice that 1 = HCF(421,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 395 > 1, we apply the division lemma to 395 and 1, to get

395 = 1 x 395 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 395 is 1

Notice that 1 = HCF(395,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 27, 68, 421, 395 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 27, 68, 421, 395?

Answer: HCF of 27, 68, 421, 395 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 27, 68, 421, 395 using Euclid's Algorithm?

Answer: For arbitrary numbers 27, 68, 421, 395 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.