Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2711, 7684, 90946 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 2711, 7684, 90946 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 2711, 7684, 90946 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 2711, 7684, 90946 is 1.
HCF(2711, 7684, 90946) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 2711, 7684, 90946 is 1.
Step 1: Since 7684 > 2711, we apply the division lemma to 7684 and 2711, to get
7684 = 2711 x 2 + 2262
Step 2: Since the reminder 2711 ≠ 0, we apply division lemma to 2262 and 2711, to get
2711 = 2262 x 1 + 449
Step 3: We consider the new divisor 2262 and the new remainder 449, and apply the division lemma to get
2262 = 449 x 5 + 17
We consider the new divisor 449 and the new remainder 17,and apply the division lemma to get
449 = 17 x 26 + 7
We consider the new divisor 17 and the new remainder 7,and apply the division lemma to get
17 = 7 x 2 + 3
We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get
7 = 3 x 2 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2711 and 7684 is 1
Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(17,7) = HCF(449,17) = HCF(2262,449) = HCF(2711,2262) = HCF(7684,2711) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 90946 > 1, we apply the division lemma to 90946 and 1, to get
90946 = 1 x 90946 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 90946 is 1
Notice that 1 = HCF(90946,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 2711, 7684, 90946?
Answer: HCF of 2711, 7684, 90946 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 2711, 7684, 90946 using Euclid's Algorithm?
Answer: For arbitrary numbers 2711, 7684, 90946 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.