Highest Common Factor of 2811, 8813 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2811, 8813 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2811, 8813 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2811, 8813 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2811, 8813 is 1.

HCF(2811, 8813) = 1

HCF of 2811, 8813 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2811, 8813 is 1.

Highest Common Factor of 2811,8813 using Euclid's algorithm

Highest Common Factor of 2811,8813 is 1

Step 1: Since 8813 > 2811, we apply the division lemma to 8813 and 2811, to get

8813 = 2811 x 3 + 380

Step 2: Since the reminder 2811 ≠ 0, we apply division lemma to 380 and 2811, to get

2811 = 380 x 7 + 151

Step 3: We consider the new divisor 380 and the new remainder 151, and apply the division lemma to get

380 = 151 x 2 + 78

We consider the new divisor 151 and the new remainder 78,and apply the division lemma to get

151 = 78 x 1 + 73

We consider the new divisor 78 and the new remainder 73,and apply the division lemma to get

78 = 73 x 1 + 5

We consider the new divisor 73 and the new remainder 5,and apply the division lemma to get

73 = 5 x 14 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2811 and 8813 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(73,5) = HCF(78,73) = HCF(151,78) = HCF(380,151) = HCF(2811,380) = HCF(8813,2811) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2811, 8813 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2811, 8813?

Answer: HCF of 2811, 8813 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2811, 8813 using Euclid's Algorithm?

Answer: For arbitrary numbers 2811, 8813 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.