Highest Common Factor of 2839, 8064 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2839, 8064 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2839, 8064 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2839, 8064 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2839, 8064 is 1.

HCF(2839, 8064) = 1

HCF of 2839, 8064 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2839, 8064 is 1.

Highest Common Factor of 2839,8064 using Euclid's algorithm

Highest Common Factor of 2839,8064 is 1

Step 1: Since 8064 > 2839, we apply the division lemma to 8064 and 2839, to get

8064 = 2839 x 2 + 2386

Step 2: Since the reminder 2839 ≠ 0, we apply division lemma to 2386 and 2839, to get

2839 = 2386 x 1 + 453

Step 3: We consider the new divisor 2386 and the new remainder 453, and apply the division lemma to get

2386 = 453 x 5 + 121

We consider the new divisor 453 and the new remainder 121,and apply the division lemma to get

453 = 121 x 3 + 90

We consider the new divisor 121 and the new remainder 90,and apply the division lemma to get

121 = 90 x 1 + 31

We consider the new divisor 90 and the new remainder 31,and apply the division lemma to get

90 = 31 x 2 + 28

We consider the new divisor 31 and the new remainder 28,and apply the division lemma to get

31 = 28 x 1 + 3

We consider the new divisor 28 and the new remainder 3,and apply the division lemma to get

28 = 3 x 9 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2839 and 8064 is 1

Notice that 1 = HCF(3,1) = HCF(28,3) = HCF(31,28) = HCF(90,31) = HCF(121,90) = HCF(453,121) = HCF(2386,453) = HCF(2839,2386) = HCF(8064,2839) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2839, 8064 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2839, 8064?

Answer: HCF of 2839, 8064 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2839, 8064 using Euclid's Algorithm?

Answer: For arbitrary numbers 2839, 8064 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.