Highest Common Factor of 284, 393, 871 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 284, 393, 871 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 284, 393, 871 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 284, 393, 871 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 284, 393, 871 is 1.

HCF(284, 393, 871) = 1

HCF of 284, 393, 871 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 284, 393, 871 is 1.

Highest Common Factor of 284,393,871 using Euclid's algorithm

Highest Common Factor of 284,393,871 is 1

Step 1: Since 393 > 284, we apply the division lemma to 393 and 284, to get

393 = 284 x 1 + 109

Step 2: Since the reminder 284 ≠ 0, we apply division lemma to 109 and 284, to get

284 = 109 x 2 + 66

Step 3: We consider the new divisor 109 and the new remainder 66, and apply the division lemma to get

109 = 66 x 1 + 43

We consider the new divisor 66 and the new remainder 43,and apply the division lemma to get

66 = 43 x 1 + 23

We consider the new divisor 43 and the new remainder 23,and apply the division lemma to get

43 = 23 x 1 + 20

We consider the new divisor 23 and the new remainder 20,and apply the division lemma to get

23 = 20 x 1 + 3

We consider the new divisor 20 and the new remainder 3,and apply the division lemma to get

20 = 3 x 6 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 284 and 393 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(20,3) = HCF(23,20) = HCF(43,23) = HCF(66,43) = HCF(109,66) = HCF(284,109) = HCF(393,284) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 871 > 1, we apply the division lemma to 871 and 1, to get

871 = 1 x 871 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 871 is 1

Notice that 1 = HCF(871,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 284, 393, 871 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 284, 393, 871?

Answer: HCF of 284, 393, 871 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 284, 393, 871 using Euclid's Algorithm?

Answer: For arbitrary numbers 284, 393, 871 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.