Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 290, 256 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 290, 256 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 290, 256 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 290, 256 is 2.
HCF(290, 256) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 290, 256 is 2.
Step 1: Since 290 > 256, we apply the division lemma to 290 and 256, to get
290 = 256 x 1 + 34
Step 2: Since the reminder 256 ≠ 0, we apply division lemma to 34 and 256, to get
256 = 34 x 7 + 18
Step 3: We consider the new divisor 34 and the new remainder 18, and apply the division lemma to get
34 = 18 x 1 + 16
We consider the new divisor 18 and the new remainder 16,and apply the division lemma to get
18 = 16 x 1 + 2
We consider the new divisor 16 and the new remainder 2,and apply the division lemma to get
16 = 2 x 8 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 290 and 256 is 2
Notice that 2 = HCF(16,2) = HCF(18,16) = HCF(34,18) = HCF(256,34) = HCF(290,256) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 290, 256?
Answer: HCF of 290, 256 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 290, 256 using Euclid's Algorithm?
Answer: For arbitrary numbers 290, 256 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.