Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 291, 2778 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 291, 2778 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 291, 2778 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 291, 2778 is 3.
HCF(291, 2778) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 291, 2778 is 3.
Step 1: Since 2778 > 291, we apply the division lemma to 2778 and 291, to get
2778 = 291 x 9 + 159
Step 2: Since the reminder 291 ≠ 0, we apply division lemma to 159 and 291, to get
291 = 159 x 1 + 132
Step 3: We consider the new divisor 159 and the new remainder 132, and apply the division lemma to get
159 = 132 x 1 + 27
We consider the new divisor 132 and the new remainder 27,and apply the division lemma to get
132 = 27 x 4 + 24
We consider the new divisor 27 and the new remainder 24,and apply the division lemma to get
27 = 24 x 1 + 3
We consider the new divisor 24 and the new remainder 3,and apply the division lemma to get
24 = 3 x 8 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 291 and 2778 is 3
Notice that 3 = HCF(24,3) = HCF(27,24) = HCF(132,27) = HCF(159,132) = HCF(291,159) = HCF(2778,291) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 291, 2778?
Answer: HCF of 291, 2778 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 291, 2778 using Euclid's Algorithm?
Answer: For arbitrary numbers 291, 2778 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.