Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 295, 166 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 295, 166 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 295, 166 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 295, 166 is 1.
HCF(295, 166) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 295, 166 is 1.
Step 1: Since 295 > 166, we apply the division lemma to 295 and 166, to get
295 = 166 x 1 + 129
Step 2: Since the reminder 166 ≠ 0, we apply division lemma to 129 and 166, to get
166 = 129 x 1 + 37
Step 3: We consider the new divisor 129 and the new remainder 37, and apply the division lemma to get
129 = 37 x 3 + 18
We consider the new divisor 37 and the new remainder 18,and apply the division lemma to get
37 = 18 x 2 + 1
We consider the new divisor 18 and the new remainder 1,and apply the division lemma to get
18 = 1 x 18 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 295 and 166 is 1
Notice that 1 = HCF(18,1) = HCF(37,18) = HCF(129,37) = HCF(166,129) = HCF(295,166) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 295, 166?
Answer: HCF of 295, 166 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 295, 166 using Euclid's Algorithm?
Answer: For arbitrary numbers 295, 166 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.