Highest Common Factor of 2989, 8371, 48501 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2989, 8371, 48501 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2989, 8371, 48501 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2989, 8371, 48501 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2989, 8371, 48501 is 1.

HCF(2989, 8371, 48501) = 1

HCF of 2989, 8371, 48501 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2989, 8371, 48501 is 1.

Highest Common Factor of 2989,8371,48501 using Euclid's algorithm

Highest Common Factor of 2989,8371,48501 is 1

Step 1: Since 8371 > 2989, we apply the division lemma to 8371 and 2989, to get

8371 = 2989 x 2 + 2393

Step 2: Since the reminder 2989 ≠ 0, we apply division lemma to 2393 and 2989, to get

2989 = 2393 x 1 + 596

Step 3: We consider the new divisor 2393 and the new remainder 596, and apply the division lemma to get

2393 = 596 x 4 + 9

We consider the new divisor 596 and the new remainder 9,and apply the division lemma to get

596 = 9 x 66 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2989 and 8371 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(596,9) = HCF(2393,596) = HCF(2989,2393) = HCF(8371,2989) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 48501 > 1, we apply the division lemma to 48501 and 1, to get

48501 = 1 x 48501 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 48501 is 1

Notice that 1 = HCF(48501,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 2989, 8371, 48501 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2989, 8371, 48501?

Answer: HCF of 2989, 8371, 48501 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2989, 8371, 48501 using Euclid's Algorithm?

Answer: For arbitrary numbers 2989, 8371, 48501 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.