Highest Common Factor of 299, 504, 639 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 299, 504, 639 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 299, 504, 639 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 299, 504, 639 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 299, 504, 639 is 1.

HCF(299, 504, 639) = 1

HCF of 299, 504, 639 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 299, 504, 639 is 1.

Highest Common Factor of 299,504,639 using Euclid's algorithm

Highest Common Factor of 299,504,639 is 1

Step 1: Since 504 > 299, we apply the division lemma to 504 and 299, to get

504 = 299 x 1 + 205

Step 2: Since the reminder 299 ≠ 0, we apply division lemma to 205 and 299, to get

299 = 205 x 1 + 94

Step 3: We consider the new divisor 205 and the new remainder 94, and apply the division lemma to get

205 = 94 x 2 + 17

We consider the new divisor 94 and the new remainder 17,and apply the division lemma to get

94 = 17 x 5 + 9

We consider the new divisor 17 and the new remainder 9,and apply the division lemma to get

17 = 9 x 1 + 8

We consider the new divisor 9 and the new remainder 8,and apply the division lemma to get

9 = 8 x 1 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 299 and 504 is 1

Notice that 1 = HCF(8,1) = HCF(9,8) = HCF(17,9) = HCF(94,17) = HCF(205,94) = HCF(299,205) = HCF(504,299) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 639 > 1, we apply the division lemma to 639 and 1, to get

639 = 1 x 639 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 639 is 1

Notice that 1 = HCF(639,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 299, 504, 639 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 299, 504, 639?

Answer: HCF of 299, 504, 639 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 299, 504, 639 using Euclid's Algorithm?

Answer: For arbitrary numbers 299, 504, 639 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.