Highest Common Factor of 30, 25, 807, 248 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 30, 25, 807, 248 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 30, 25, 807, 248 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 30, 25, 807, 248 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 30, 25, 807, 248 is 1.

HCF(30, 25, 807, 248) = 1

HCF of 30, 25, 807, 248 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 30, 25, 807, 248 is 1.

Highest Common Factor of 30,25,807,248 using Euclid's algorithm

Highest Common Factor of 30,25,807,248 is 1

Step 1: Since 30 > 25, we apply the division lemma to 30 and 25, to get

30 = 25 x 1 + 5

Step 2: Since the reminder 25 ≠ 0, we apply division lemma to 5 and 25, to get

25 = 5 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 30 and 25 is 5

Notice that 5 = HCF(25,5) = HCF(30,25) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 807 > 5, we apply the division lemma to 807 and 5, to get

807 = 5 x 161 + 2

Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 2 and 5, to get

5 = 2 x 2 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 807 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(807,5) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 248 > 1, we apply the division lemma to 248 and 1, to get

248 = 1 x 248 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 248 is 1

Notice that 1 = HCF(248,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 30, 25, 807, 248 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 30, 25, 807, 248?

Answer: HCF of 30, 25, 807, 248 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 30, 25, 807, 248 using Euclid's Algorithm?

Answer: For arbitrary numbers 30, 25, 807, 248 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.