Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 301, 7923, 4312 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 301, 7923, 4312 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 301, 7923, 4312 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 301, 7923, 4312 is 1.
HCF(301, 7923, 4312) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 301, 7923, 4312 is 1.
Step 1: Since 7923 > 301, we apply the division lemma to 7923 and 301, to get
7923 = 301 x 26 + 97
Step 2: Since the reminder 301 ≠ 0, we apply division lemma to 97 and 301, to get
301 = 97 x 3 + 10
Step 3: We consider the new divisor 97 and the new remainder 10, and apply the division lemma to get
97 = 10 x 9 + 7
We consider the new divisor 10 and the new remainder 7,and apply the division lemma to get
10 = 7 x 1 + 3
We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get
7 = 3 x 2 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 301 and 7923 is 1
Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(10,7) = HCF(97,10) = HCF(301,97) = HCF(7923,301) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 4312 > 1, we apply the division lemma to 4312 and 1, to get
4312 = 1 x 4312 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 4312 is 1
Notice that 1 = HCF(4312,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 301, 7923, 4312?
Answer: HCF of 301, 7923, 4312 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 301, 7923, 4312 using Euclid's Algorithm?
Answer: For arbitrary numbers 301, 7923, 4312 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.