Highest Common Factor of 303, 465, 14 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 303, 465, 14 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 303, 465, 14 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 303, 465, 14 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 303, 465, 14 is 1.

HCF(303, 465, 14) = 1

HCF of 303, 465, 14 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 303, 465, 14 is 1.

Highest Common Factor of 303,465,14 using Euclid's algorithm

Highest Common Factor of 303,465,14 is 1

Step 1: Since 465 > 303, we apply the division lemma to 465 and 303, to get

465 = 303 x 1 + 162

Step 2: Since the reminder 303 ≠ 0, we apply division lemma to 162 and 303, to get

303 = 162 x 1 + 141

Step 3: We consider the new divisor 162 and the new remainder 141, and apply the division lemma to get

162 = 141 x 1 + 21

We consider the new divisor 141 and the new remainder 21,and apply the division lemma to get

141 = 21 x 6 + 15

We consider the new divisor 21 and the new remainder 15,and apply the division lemma to get

21 = 15 x 1 + 6

We consider the new divisor 15 and the new remainder 6,and apply the division lemma to get

15 = 6 x 2 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 303 and 465 is 3

Notice that 3 = HCF(6,3) = HCF(15,6) = HCF(21,15) = HCF(141,21) = HCF(162,141) = HCF(303,162) = HCF(465,303) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 14 > 3, we apply the division lemma to 14 and 3, to get

14 = 3 x 4 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 14 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(14,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 303, 465, 14 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 303, 465, 14?

Answer: HCF of 303, 465, 14 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 303, 465, 14 using Euclid's Algorithm?

Answer: For arbitrary numbers 303, 465, 14 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.